Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys
نویسندگان
چکیده
This paper presents an evolutionary based method to obtain the un-stressed lattice spacing, d0, required to calculate the residual stress profile across a weld of an age-hardenable aluminum alloy, AA2024. Due to the age-hardening nature of this alloy, the d0 value depends on the heat treatment. In the case of welds, the heat treatment imposed by the welding operation differs significantly depending on the distance to the center of the joint. This implies that a variation of d0 across the weld is expected, a circumstances which limits the possibilities of conventional analytical methods to determine the required d0 profile. The interest of the paper is, therefore, two-fold: First, to demonstrate that the application of an evolutionary algorithm solves a problem not addressed in the literature such as the determination of the required data to calculate the residual stress state across a weld. Second, to show the robustness of the approximation used, which allows obtaining solutions for different constraints of the problem. Our results confirm the capacity of evolutionary computation to reach realistic solutions under three different scenarios of the initial conditions and the available experimental data. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Effect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding
The purpose of this study was to examine the effect of adding Nano particles such as Nano Carbon Tube during Friction Stir Welding (FSW) on dissimilar Al alloy joints. More specifically, both FSW and Friction Stir Processing (FSP) were performed simultaneously to investigate the effect of adding Nano particles on mechanical properties and microstructure of the weld zone for joining AA5754-H22 a...
متن کاملEffect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding
The purpose of this study was to examine the effect of adding Nano particles such as Nano Carbon Tube during Friction Stir Welding (FSW) on dissimilar Al alloy joints. More specifically, both FSW and Friction Stir Processing (FSP) were performed simultaneously to investigate the effect of adding Nano particles on mechanical properties and microstructure of the weld zone for joining AA5754-H22 a...
متن کاملEvaluation of quenching process on low cycle fatigue life for cylinder head
Due to the complex geometry and thermos-mechanical loading, cylinder heads are the most challenging parts among all parts engines. They must endure cyclic thermal and mechanical loading throughout their lifetime. Cast aluminum alloys are normally quenched after solution treatment process to improve aging responses. Rapid quenching can lead to high residual stress. Residual stress is one of the ...
متن کاملThe Investigation of Modelling Material Behavior in Autofrettaged Tubes Made from Aluminium Alloys
Normal 0 false false false EN-US X-NONE AR-SA The ratio of compression yield strength to the initial tensile yield strength is called Bauschinger effect factor, BEF. A nonlinear strain hardening mathematical model is proposed for 7075 aluminium alloy (A7075). Uniaxial tension-compression experimental data are used to figure out a suitable model to study the BEF. Hence, uniaxial tension-co...
متن کاملCompositional evolution of Q-phase precipitates in an aluminum alloy
Lightweight, age-hardenable aluminum alloys are attracting increasing attention as a means to reduce vehicle mass and improve fuel economy. To accelerate the adoption of these alloys, knowledge of the complex precipitation processes that underlie their primary strengthening mechanism is essential. Here we employ a combination of atom-probe tomography (APT), differential scanning calorimetry (DS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 40 شماره
صفحات -
تاریخ انتشار 2016